A Noise-Robust Method with Smoothed \ell_1/\ell_2 Regularization for Sparse Moving-Source Mapping
نویسندگان
چکیده
The method described here performs blind deconvolution of the beamforming output in the frequency domain. To provide accurate blind deconvolution, sparsity priors are introduced with a smooth l1/l2 regularization term. As the mean of the noise in the power spectrum domain is dependent on its variance in the time domain, the proposed method includes a variance estimation step, which allows more robust blind deconvolution. Validation of the method on both simulated and real data, and of its performance, are compared with two well-known methods from the literature: the deconvolution approach for the mapping of acoustic sources, and sound density modeling.
منابع مشابه
A Noise-Robust Method with Smoothed ℓ1/ℓ2 Regularization for Sparse Moving-Source Mapping
The method described here performs blind deconvolution of the beamforming output in the frequency domain. To provide accurate blind deconvolution, sparsity priors are introduced with a smoothed `1/`2 regularization term. As the mean of the noise in the power spectrum domain depends on its variance in the time domain, the proposed method includes a variance estimation step, which allows more rob...
متن کاملRecovery of signals by a weighted $\ell_2/\ell_1$ minimization under arbitrary prior support information
In this paper, we introduce a weighted l2/l1 minimization to recover block sparse signals with arbitrary prior support information. When partial prior support information is available, a sufficient condition based on the high order block RIP is derived to guarantee stable and robust recovery of block sparse signals via the weighted l2/l1 minimization. We then show if the accuracy of arbitrary p...
متن کاملRecovering PCA from Hybrid-$(\ell_1,\ell_2)$ Sparse Sampling of Data Elements
This paper addresses how well we can recover a data matrix when only given a few of its elements. We present a randomized algorithm that element-wise sparsifies the data, retaining only a few its elements. Our new algorithm independently samples the data using sampling probabilities that depend on both the squares (l2 sampling) and absolute values (l1 sampling) of the entries. We prove that the...
متن کاملBayesian sparse regularization in near-field wideband aeroacoustic imaging for wind tunnel test
1397 Robust deconvolution-based methods using sparsity constraint and sparse regularization achieve high spatial resolutions in aeroacoustic imaging in low Signal-to-Noise Ratio (SNR). But sparse prior and model parameters should be further optimized to obtain super resolution and be robust to sparsity constraint. In this paper, we propose a Robust Approach with Bayesian Sparse Regularization i...
متن کاملSmoothed l0 Norm Regularization for Sparse-View X-Ray CT Reconstruction
Low-dose computed tomography (CT) reconstruction is a challenging problem in medical imaging. To complement the standard filtered back-projection (FBP) reconstruction, sparse regularization reconstruction gains more and more research attention, as it promises to reduce radiation dose, suppress artifacts, and improve noise properties. In this work, we present an iterative reconstruction approach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.03450 شماره
صفحات -
تاریخ انتشار 2016